Neuroconscience

The latest thoughts, musings, and data in cognitive science and neuroscience.

Tag: meditation

Can compassion be trained like a muscle? Active-controlled fMRI of compassion meditation.

Among the cognitive training literature, meditation interventions are particularly unique in that they often emphasize emotional or affective processing at least as much as classical ‘top-down’ attentional control. From a clinical and societal perspective, the idea that we might be able to “train” our “emotion muscle” is an attractive one. Recently much has been made of the “empathy deficit” in the US, ranging from empirical studies suggesting a relationship between quality-of-care and declining caregiver empathy, to a recent push by President Obama to emphasize the deficit in numerous speeches.

While much of the training literature focuses on cognitive abilities like sustained attention and working memory, many investigating meditation training have begun to study the plasticity of affective function, myself included.  A recent study by Helen Weng and colleagues in Wisconsin investigated just this question, asking if compassion (“loving-kindness”) meditation can alter altruistic behavior and associated neural processing. Her study is one of the first of its kind, in that rather than merely comparing groups of advanced practitioners and controls, she utilized a fully-randomized active-controlled design to see if compassion responds to brief training in novices while controlling for important confounds.

As many readers should be aware, a chronic problem in training studies is a lack of properly controlled longitudinal design. At best, many rely on “passive” or “no-contact” controls who merely complete both measurements without receiving any training. Even in the best of circumstances “active” controls are often poorly matched to whatever is being emphasized and tested in the intervention of interest. While having both groups do “something” is better than a passive or no-control design, problems may still arise if the measure of interest is mismatched to the demand characteristics of the study.  Stated simply, if your condition of interest receives attention training and attention tests, and your control condition receives dieting instruction or relaxation, you can expect group differences to be confounded by an explicit “expectation to improve” in the interest group.

In this regard Weng et al present an almost perfect example of everything a training study should be. Both interventions were delivered via professionally made audio CDs (you can download them yourselves here!), with participants’ daily practice experiences being recorded online. The training materials were remarkably well matched for the tests of interest and extra care was taken to ensure that the primary measures were not presented in a biased way. The only thing they could have done further would be a single blind (making sure the experimenters didn’t know the group identity of each participant), but given the high level of difficulty in blinding these kinds of studies I don’t blame them for not undertaking such a manipulation. In all the study is extremely well-controlled for research in this area and I recommend it as a guideline for best practices in training research.

Specifically, Weng et al tested the impact of loving-kindness compassion meditation or emotion reappraisal training on an emotion regulation fMRI task and behavioral economic game measuring altruistic behavior. For the fMRI task, participants viewed emotional pictures (IAPS) depicting suffering or neutral scenarios and either practiced a compassion meditation or reappraisal strategy to regulate their emotional response, before and after training. After the follow-up scan, good-old fashion experimental deception was used to administer a dictator economics-game that was ostensibly not part of the primary study and involved real live players (both deceptions).

For those not familiar with the dictator game, the concept is essentially that a participant watches a “dictator” endowed with 100$ give “unfair” offers to a “victim” without any money. Weng et al took great care in contextualizing the test purely in economic terms, limiting demand confounds:

Participants were told that they were playing the game with live players over the Internet. Effects of demand characteristics on behavior were minimized by presenting the game as a unique study, describing it in purely economic terms, never instructing participants to use the training they received, removing the physical presence of players and experimenters during game play, and enforcing real monetary consequences for participants’ behavior.

This is particularly important, as without these simple manipulations it would be easy for stodgy reviewers like myself to worry about subtle biases influencing behavior on the task. Equally important is the content of the two training programs. If for example, Weng et al used a memory training or attention task as their active-control group, it would be difficult not to worry that behavioral differences were due to one group expecting a more emotional consequence of the study, and hence acting more altruistic. In the supplementary information, Weng et al describe the two training protocols in great detail:

Compassion

… Participants practiced compassion for targets by 1) contemplating and envisioning their suffering and then 2) wishing them freedom from that suffering. They first practiced compassion for a Loved One, such as a friend or family member. They imagined a time their loved one had suffered (e.g., illness, injury, relationship problem), and were instructed to pay attention to the emotions and sensations this evoked. They practiced wishing that the suffering were relieved and repeated the phrases, “May you be free from this suffering. May you have joy and happiness.” They also envisioned a golden light that extended from their heart to the loved one, which helped to ease his/her suffering. They were also instructed to pay attention to bodily sensations, particularly around the heart. They repeated this procedure for the Self, a Stranger, and a Difficult Person. The Stranger was someone encountered in daily life but not well known (e.g., a bus driver or someone on the street), and the Difficult Person was someone with whom there was conflict (e.g., coworker, significant other). Participants envisioned hypothetical situations of suffering for the stranger and difficult person (if needed) such as having an illness or experiencing a failure. At the end of the meditation, compassion was extended towards all beings. For each new meditation session, participants could choose to use either the same or different people for each target category (e.g., for the loved one category, use sister one day and use father the next day).

Reappraisal

… Participants were asked to recall a stressful experience from the past 2 years that remained upsetting to them, such as arguing with a significant other or receiving a lower-than- expected grade. They were instructed to vividly recall details of the experience (location, images, sounds). They wrote a brief description of the event, and chose one word to best describe the feeling experienced during the event (e.g., sad, angry, anxious). They rated the intensity of the feeling during the event, and the intensity of the current feeling on a scale (0 = No feeling at all, 100 = Most intense feeling in your life). They wrote down the thoughts they had during the event in detail. Then they were asked to reappraise the event (to think about it in a different, less upsetting way) using 3 different strategies, and to write down the new thoughts. The strategies included 1) thinking about the situation from another person’s perspective (e.g., friend, parent), 2) viewing it in a way where they would respond with very little emotion, and 3) imagining how they would view the situation if a year had passed, and they were doing very well. After practicing each strategy, they rated how reasonable each interpretation was (0 = Not at all reasonable, 100 = Completely reasonable), and how badly they felt after considering this view (0 = Not bad at all, 100 = Most intense ever). Day to day, participants were allowed to practice reappraisal with the same stressful event, or choose a different event. Participants logged the amount of minutes practiced after the session.

In my view the active control is extremely well designed for the fMRI and economic tasks, with both training methods explicitly focusing on the participant altering an emotional response to other individuals.  In tests of self-rated efficacy, both groups showed significant decreases in negative emotion, further confirming the active control. Interestingly when Weng et al compared self-ratings over time, only the compassion group showed significant reduction from the first half of training sessions to the last. I’m not sure if this constitutes a limitation, as Weng et al further report that on each individual training day the reappraisal group reported significant reductions, but that the reductions themselves did not differ significantly over time. They explain this as being likely due to the fact that the reappraisal group frequently changed emotional targets, whereas the compassion group had the same 3 targets throughout the training. Either way the important point is that both groups self-reported similar overall reductions in negative emotion during the course of the study, strongly supporting the active control.

Now what about the findings? As mentioned above, Weng et al tested participants before and after training on an fMRI emotion regulation task. After the training, all participants performed the “dictator game”, shown below. After rank-ordering the data, they found that the compassion group showed significantly greater redistribution:

The dictator task (left) and increased redistribution (right).

For the fMRI analysis, they analyzed BOLD responses to negative vs neutral images at both time points, subtracted the beta coefficients, and then entered these images into a second-level design matrix testing the group difference, with the rank-ordered redistribution scores as a covariate of interest. They then tested for areas showing group differences in the correlation of redistribution scores and changes of BOLD response to negative vs neutral images (pre vs post), across the whole brain and in several ROIs, while properly correcting for multiple comparisons. Essentially this analysis asks, where in the brain do task-related changes in BOLD correlate more or less with the redistribution score in one group or another. For the group x covariate interaction they found significant differences (increased BOLD-covariate correlation) in the right inferior parietal cortex (IPC), a region of the parietal attention network, shown on the left-hand panel:

Increased correlation between negative vs neutral imagery related BOLD and redistribution scores (left), connectivity with DLPFC (right).

They further extracted signal from the IPC cluster and entered it into a conjunction analysis, testing for areas showing significant correlation  with the IPC activity, and found a strong effect in right DLPFC (right panel). Finally they performed a psychophysiological interaction (PPI) analysis with the right DLPFC activity as the seed, to determine regions showing significant task-modulated connectivity with that DLPFC activity. The found increased emotion-modulated DLPFC connectivity to nucleus accumbens, a region involved in encoding positive rewards (below, right).

Screen shot 2013-05-23 at 3.21.15 PM

PPI shows increased emotion-modulated connectivity of nucleus accumbens and DLPFC.

Together these results implicate training-related BOLD activity increases to emotional stimuli in the parietal attention network and increased parietal connectivity with regions implicated in cognitive control and reward processing, in the observed altruistic behavior differences. The authors conclude that compassion training may alter emotional processing through a novel mechanism, where top-down central-executive circuits redirect emotional information to areas associated with positive reward, reflecting the role of compassion meditation in emphasizing increased positive emotion to the aversive states of others. A fitting and interesting conclusion, I think.

Overall, the study should receive high marks for its excellent design and appropriate statistical rigor. There is quite a bit of interesting material in the supplementary info, a strategy I dislike, but that is no fault of the authors considering the publishing journal (Psych Science). The question itself is extremely novel, in terms of previous active-controlled studies. To date only one previous active-controlled study investigated the role of compassion meditation on empathy-related neuroplasticity. However that study compared compassion meditation with a memory strategy course, which (in my opinion) exposes it to serious criticism regarding demand characteristic. The authors do reference that study, but only briefly to state that both studies support a role of compassion training in altering positive emotion- personally I would have appreciated a more thorough comparison, though I suppose I can go and to that myself if I feel so inclined :).

The study does have a few limitations worth mentioning. One thing that stood out to me was that the authors never report the results of the overall group mean contrast for negative vs neutral images. I would have liked to know if the regions showing increased correlation with redistribution actually showed higher overall mean activation increases during emotion regulation. However as the authors clearly had quite specific hypotheses, leading them to  restrict their alpha to 0.01 (due to testing 1 whole-brain contrast and 4 ROIs), I can see why they left this out. Given the strong results of the study, it would in retrospect perhaps have been more prudent to skip  the ROI analysis (which didn’t seem to find much) and instead focus on testing the whole brain results.  I can’t blame them however, as it is surprising not to see anything going on in insula or amygdala for this kind of training.  It is also a bit unclear to me why the DLPFC was used as the PPI seed as opposed to the primary IPC cluster, although I am somewhat unfamiliar with the conjunction-connectivity analysis used here. Finally, as the authors themselves point out, a major limitation of the study is that the redistribution measure was collected only at time two, preventing a comparison to baseline for this measure.

Given the methodological state of the topic (quite poor, generally speaking), I am willing to grant them these mostly minor caveats. Of course, without a baseline altruism measure it is difficult to make a strong conclusion about the causal impact of the meditation training on altruism behavior, but at least their neural data are shielded from this concern. So while we can’t exhaustively conclude that compassion can be trained, the results of this study certainly suggest it is possible and perhaps even likely, providing a great starting point for future research. One interesting thing for me was the difference in DLPFC. We also found task-related increases in dorsolateral prefrontal cortex following active-controlled meditation, although in the left hemisphere and for a very different kind of training and task. One other recent study of smoking cessation also reported alteration in DLPFC following mindfulness training, leading me to wonder if we’re seeing the emergence of empirical consensus for this region’s specific involvement in meditation training. Another interesting point for me was that affective regulation here seems to involve primarily top-down or attention related neural correlates,  suggesting that bottom-up processing (insula, amygdala) may be more resilient to brief training, something we also found in our study. I wonder if the group mean-contrasts would have been revealing here (i.e. if there were differences in bottom-up processing that don’t correlate with redistribution). All together a great study that raises the bar for training research in cognitive neuroscience!

Active-controlled, brief body-scan meditation improves somatic signal discrimination.

Here in the science blog-o-sphere we often like to run to the presses whenever a laughably bad study comes along, pointing out all the incredible feats of ignorance and sloth. However, this can lead to science-sucks cynicism syndrome (a common ailment amongst graduate students), where one begins to feel a bit like all the literature is rubbish and it just isn’t worth your time to try and do something truly proper and interesting. If you are lucky, it is at this moment that a truly excellent paper will come along at the just right time to pick up your spirits and re-invigorate your work. Today I found myself at one such low-point, struggling to figure out why my data suck, when just such a beauty of a paper appeared in my RSS reader.

data_sensing (1)The paper, “Brief body-scan meditation practice improves somatosensory perceptual decision making”, appeared in this month’s issue of Consciousness and Cognition. Laura Mirams et al set out to answer a very simple question regarding the impact of meditation training (MT) on a “somatic signal detection task” (SSDT). The study is well designed; after randomization, both groups received audio CDs with 15 minutes of daily body-scan meditation or excerpts from The Lord of The Rings. For the SSD task, participants simply report when they felt a vibration stimulus on the finger, where the baseline vibration intensity is first individually calibrated to a 50% detection rate. The authors then apply a signal-detection analysis framework to discern the sensitivity or d’ and decision criteria c.

Mirams et al found that, even when controlling for a host of baseline factors including trait mindfulness and baseline somatic attention, MT led to a greater increase in d’ driven by significantly reduced false-alarms. Although many theorists and practitioners of MT suggest a key role for interoceptive & somatic attention in related alterations of health, brain, and behavior, there exists almost no data addressing this prediction, making these findings extremely interesting. The idea that MT should impact interoception and somatosensation is very sensible- in most (novice) meditation practices it is common to focus attention to bodily sensations of, for example, the breath entering the nostril. Further, MT involves a particular kind of open, non-judgemental awareness of bodily sensations, and in general is often described to novice students as strengthening the relationship between the mind and sensations of the body. However, most existing studies on MT investigate traditional exteroceptive, top-down elements of attention such as conflict resolution and the ability to maintain attention fixation for long periods of time.

While MT certainly does involve these features, it is arguable that the interoceptive elements are more specific to the precise mechanisms of interest (they are what you actually train), whereas the attentional benefits may be more of a kind of side effect, reflecting an early emphasis in MT on establishing attention. Thus in a traditional meditation class, you might first learn some techniques to fixate your attention, and then later learn to deploy your attention to specific bodily targets (i.e. the breath) in a particular way (non-judgmentally). The goal is not necessarily to develop a super-human ability to filter distractions, but rather to change the way in which interoceptive responses to the world (i.e. emotional reactions) are perceived and responded to. This hypothesis is well reflected in the elegant study by Mirams et al; they postulate specifically that MT will lead to greater sensitivity (d’), driven by reduced false alarms rather than an increased hit-rate, reflecting a greater ability to discriminate the nature of an interoceptive signal from noise (note: see comments for clarification on this point by Steve Fleming – there is some ambiguity in interpreting the informational role of HR and FA in d’). This hypothesis not only reflects the theoretically specific contribution of MT (beyond attention training, which might be better trained by video games for example), but also postulates a mechanistically specific hypothesis to test this idea, namely that MT leads to a shift specifically in the quality of interoceptive signal processing, rather than raw attentional control.

At this point, you might ask if everyone is so sure that MT involves training interoception, why is there so little data on the topic? The authors do a great job reviewing findings (even including currently in-press papers) on interoception and MT. Currently there is one major null finding using the canonical heartbeat detection task, where advanced practitioners self-reported improved heart beat detection but in reality performed at chance. Those authors speculated that the heartbeat task might not accurately reflect the modality of interoception engaged in by practitioners. In addition a recent study investigated somatic discrimination thresholds in a cross-section of advanced practitioners and found that the ability to make meta-cognitive assessments of ones’ threshold sensitivity correlated with years of practice. A third recent study showed greater tactile sensation acuity in practitioners of Tai Chi.  One longitudinal study [PDF], a wait-list controlled fMRI investigation by Farb et al, found that a mindfulness-based stress reduction course altered BOLD responses during an attention-to-breath paradigm. Collectively these studies do suggest a role of MT in training interoception. However, as I have complained of endlessly, cross-sections cannot tell us anything about the underlying causality of the observed effects, and longitudinal studies must be active-controlled (not waitlisted) to discern mechanisms of action. Thus active-controlled longitudinal designs are desperately needed, both to determine the causality of a treatment on some observed effect, and to rule out confounds associated with motivation, demand-characteristic, and expectation. Without such a design, it is very difficult to conclude anything about the mechanisms of interest in an MT intervention.

In this regard, Mirams went above and beyond the call of duty as defined by the average paper. The choice of delivering the intervention via CD is excellent, as we can rule out instructor enthusiasm/ability confounds. Further the intervention chosen is extremely simple and well described; it is just a basic body-scan meditation without additional fluff or fanfare, lending to mechanistic specificity. Both groups were even instructed to close their eyes and sit when listening, balancing these often overlooked structural factors. In this sense, Mirams et al have controlled for instruction, motivation, intervention context, baseline trait mindfulness, and even isolated the variable of interest- only the MT group worked with interoception, though both exerted a prolonged period of sustained attention. Armed with these controls we can actually say that MT led to an alteration in interoceptive d’, through a mechanism dependent upon on the specific kind of interoceptive awareness trained in the intervention.

It is here that I have one minor nit-pick of the paper. Although the use of Lord of the Rings audiotapes is with precedent, and likely a great control for attention and motivation, you could be slightly worried that reading about Elves and Orcs is not an ideal control for listening to hours of tapes instructing you to focus on your bodily sensations, if the measure of interest involves fixating on the body. A pure active control might have been a book describing anatomy or body parts; then we could exhaustively conclude that not only is it interoception driving the findings, but the particular form of interoceptive attention deployed by meditation training. As it is, a conservative person might speculate that the observed differences reflect demand characteristics- MT participants deploy more attention to the body due to a kind of priming mechanism in the teaching. However this is an extreme nitpick and does not detract from the fact that Mirams and co-authors have made an extremely useful contribution to the literature. In the future it would be interesting to repeat the paradigm with a more body-oriented control, and perhaps also in advanced practitioners before and after an intensive retreat to see if the effect holds at later stages of training. Of course, given my interest in applying signal-detection theory to interoceptive meta-cognition, I also cannot help but wonder what the authors might have found if they’d applied a Fleming-style meta-d’ analysis to this study.

All in all, a clear study with tight methods, addressing a desperately under-developed research question, in an elegant fashion. The perfect motivation to return to my own mangled data ☺

Teaser from my upcoming submission – Changes of cognitive-affective neural processing following active-controlled mindfulness intervention

As I’ve been dreadfully quiet in the weeks leading up to the submission of my first fMRI paper, I thought I’d give my readers a little tidbit teaser of my (hopefully) forthcoming article. We’re within days of submission and I’ve got high hopes for a positive review. Here is the abstract:

Mindfulness meditation is a set of attention-based, regulatory and self-inquiry training regimes. Although the impact of mindfulness meditation training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act on attention through bottom-up salience and top-down control mechanisms, but until now conflicting evidence from behavioral and neural measures has made it difficult to distinguish the role of these mechanisms. To resolve this question we conducted a fully randomized 6-week longitudinal trial of MT, explicitly controlling for cognitive and treatment effects. We measured behavioral metacognition and whole-brain BOLD signals during an affective Stroop task before and after intervention. Although both groups improved significantly on a response-inhibition task, only the MT group showed reduced affective Stroop conflict. Moreover, the MT group showed greater dorsolateral prefrontal cortex (DLPFC) responses during executive processing, indicating increased recruitment of top-down mechanisms to resolve conflict. Individual differences in MT adherence predicted improvements in response-inhibition and increased recruitment of dorsal anterior cingulate cortex (dACC), medial prefrontal cortex (mPFC), and right anterior insula during negative valence processing, suggesting that rigorous mindfulness practice precedes alterations of bottom-up processes.

And a teaser figure:

Image

Figure 5, Greater levels of meditation practice predict increased dorsolateral prefrontal, right anterior insula, and medial-prefrontal BOLD recruitment during negative > neutral trials. pFWE < 0.05 corrected on cluster level, voxel selection threshold p = 0.001.

Things are fantastic, especially since I’ve moved to London. The ICN is a great place for cognitive neuroscience and I’m learning and doing more than I ever have before. While I prepare this paper, I am simultaneously finishing up a longitudinal VBM analysis of the same data, and beginning to script an eventual 60 subject affective-stroop Dynamic Causal Modeling connectivity study. Everyone here is insanely talented and there is hardly a day that goes by when there isn’t some interesting discussion, a fascinating talk, or an exciting collaboration to be had.

disclaimer: these findings have NOT been peer reviewed and as such should not be believed nor reported as science! They’re just pretty pictures for now.

A brave new default mode in meditation practitioners- or just confused controls? Review of Brewer (2011)

Given that my own work focuses on cognitive control, intrinsic connectivity, and mental-training (e.g. meditation) I was pretty excited to see Brewer et al’s paper on just these topics appear in PNAS just in time for the winter holidays. I meant to review it straight away but have been buried under my own data analysis until recently. Sadly, when I finally got around to delving into it, my overall reaction was lukewarm at best. Without further ado, my review of:

“Meditation experience is associated with differences in default mode network activity and connectivity

Abstract:

“Many philosophical and contemplative traditions teach that “living in the moment” increases happiness. However, the default mode of humans appears to be that of mind-wandering, which correlates with unhappiness, and with activation in a network of brain areas associated with self-referential processing. We investigated brain activity in experienced meditators and matched meditation-naive controls as they performed several different meditations (Concentration, Loving-Kindness, Choiceless Awareness). We found that the main nodes of the default mode network(medial prefrontal and posterior cingulate cortices) were relatively deactivated in experienced meditators across all meditation types. Furthermore, functional connectivity analysis revealed stronger coupling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dorsolateral prefrontal cortices (regions previously implicated in self- monitoring and cognitive control), both at baseline and during meditation. Our findings demonstrate differences in the default-mode network that are consistent with decreased mind-wandering. As such, these provide a unique understanding of possible neural mechanisms of meditation.”

Summary:

Aims: 9/10

Methods: 5/10

Interpretation: 7/10

Importance/Generalizability: 4/10

Overall: 6.25/10

The good: simple, clear cut design, low amount of voodoo, relatively sensible findings

The bad: lack of behavioral co-variates to explain neural data, yet another cross-sectional design

The ugly: prominent reporting of uncorrected findings, comparison of meditation-naive controls to practitioners using meditation instructions (failure to control task demands).

Take-home: Some interesting conclusions, from a somewhat tired and inconclusive design. Poor construction of baseline condition leads to a shot-gun spattering of brain regions with a few that seem interesting given prior work. Let’s move beyond poorly controlled cross-sections and start unravelling the core mechanisms (if any) involved in mindfulness.

Extended Review:
Although this paper used typical GLM and functional connectivity analyses, it loses points in several areas. First, although the authors repeatedly suggest that their “relative paucity of findings” may be “driven by the sensitivity of GLM analysis to fluctuations at baseline… and since meditation practitioners may be (meditating) at baseline…” the contrast would be weak. However, I will side with Jensen et al (2011) here in saying: Meditation naive controls receiving less than 5 minutes of instruction in “focused attention, loving-kindness and choiceless awareness” are simply no controls at all. The argument that the inability of the GLM to detect differences that are quite obviously confounded by a lack of an appropriately controlled baseline is galling at best. This is why we use a GLM-approach; it’s senseless to make conclusions about brain activity when your baseline is no baseline at all. Telling meditation-naive controls to utilize esoteric cultural practices of which they have only just been introduced too, and then comparing that to highly experienced practitioners is a perfect storm of cognitive confusion and poorly controlled demand characteristic. Further, I am disappointed in the review process that allowed the following statement “We found a similar pattern in the medial prefrontal cortex (mPFC), another primary node of the DMN, although it did not survive whole-brain correction for signifigance” followed by this image:

image

These results are then referred to repeatedly in the following discussion. I’m sorry, but when did uncorrected findings suddenly become interpretable? I blame the reviewers here over the authors- they should have known better. The MPFC did not survive correction and hence should not be included in anything other than a explicitly stated as such “exploratory analysis”. In fact it’s totally unclear from the methods section of this paper how these findings where at all discovered: did the authors first examine the uncorrected maps and then re-analyze them using the FWE correction? Or did they reduce their threshold in an exploratory post-hoc fashion? These things make a difference and I’m appalled that the reviewers let the article go to print as it is, when figure 1 and the discussion clearly give the non-fMRI savy reader the impression that a main finding of this study is MPFC activation during meditation. Can we please all agree to stop reporting uncorrected p-values?

I will give the authors this much; the descriptions of practice, and the theoretical guideposts are all quite coherent and well put-together. I found their discussion of possible mechanisms of DMN alteration in meditation to be intriguing, even if I do not agree with their conclusion. Still, it pains me to see a paper with so much potential fail to address the pitfalls in meditation research that should now be well known. Indeed the authors themselves make much ado about how difficult proper controls are, yet seem somehow oblivious to the poorly controlled design they here report. This leads me to my own reinterpretation of their data.

A new default mode, or confused controls?

Brewer et al (2011) report that, when using a verbally guided meditation instruction with meditation naive-controls and experienced practitioners, greater activations in PCC, temporal regions, and for loving-kindness, amygdala are found. Given strong evidence by colleagues Christian Jensen et al (2011) that these kinds of contrasts better represent differences in attentional effort than any mechanism inherent to meditation, I can’t help but wonder if what were seeing here is simply some controls trying to follow esoteric instructions and getting confused in the process. Consider the instruction for the choiceless awareness condition:

“Please pay attention to whatever comes into your awareness, whether it is a thought, emotion, or body sensation. Just follow it until something else comes into your awareness, not trying to hold onto it or change it in any way. When something else comes into your awareness, just pay attention to it until the next thing comes along”

Given that in most contemplative traditions, choiceless awareness techniques are typically late-level advanced practices, in which the very concept of grasping to a stimulus is distinctly altered and laden with an often spiritual meaning, it seems obvious to me that such an instruction constitutes and excellent mindwandering inducement for naive-controls. Do you meditate? I do a little, and yet I find these instructions extremely difficult to follow without essentially sending my mind in a thousand directions. Am I doing this correctly?  When should I shift? Is this a thought or am I just feeling hungry? These things constitute mind-wandering but for the controls, I would argue they constitute following the instructions. The point is that you simply can’t make meaningful conclusions about the neural mechanisms involved in mindfulness from these kinds of instructions.

Finally, let’s examine the functional-connectivity analysis. To be honest, there isn’t a whole lot to report here; the functional connectivity during meditation is perhaps confounded by the same issues I list above, which seems to me a probable cause for the diverse spread of regions reported between controls and meditators. I did find this bit to be interesting:

“Using the mPFC as the seed region, we found increased connectivity with the fusiform gyrus, inferior temporal and parahippocampal gyri, and left posterior insula (among other regions) in meditators relative to controls during meditation (Fig. 3, Fig. S1H, and Table S3). A subset of those regions showed the same relatively increased connectivity in meditators during the baseline period as well (Fig. S1G and Table1)

I found it interesting that the meditation conditions appear to co-activate MPFC and insula, and would love to see this finding replicated in properly controlled design. I also have a nagging wonder as to why the authors didn’t bother to conduct a second-level covariance analysis of their findings with the self-reported mind-wandering scores. If these findings accurately reflect meditation-induced alterations in the DMN, or as the authors more brazenly suggest “a entirely new default network”, wouldn’t we expect their PCC modulations to be predicted by individual variability in mind-wandering self-reports? Of course, we could open the whole can of worms that is “what does it mean when you ask participants if they ‘experienced mind wandering” but I’ll leave that for a future review. At least the authors throw a bone to neurophenomenology, suggesting in the discussion that future work utilize first-person methodology. Indeed.

Last, it occurs to me that the primary finding, of increased DLPFC and ACC in meditation>Controls, also fits well with my intepretation that this design is confounded by demand characteristics. If you take a naive subject and put them in the scanner with these instructions, I’ve argued that their probably going to do something a whole lot like mind-wandering. On the other hand, an experienced practitioner has a whole lot of implicit pressure on them to live up to their tradition. They know what they are their for, and hence they know that they should be doing their thing with as much effort as possible. So what does the contrast meditation>naive really give us? It gives us mind-wandering in the naive group, and increased attentional effort in the practitioner group. We can’t conclude anything from this design regarding mechanisms intrinsic to mindfulness; I predict that if you constructed a similar setting with any kind of dedicated specialist, and gave instructions like “think about your profession, what it means to you, remember a time you did really well” you would see the exact same kind of results. You just can’t compare the uncomparable.

Disclaimer: as usual, I review in the name of science, and thank the authors whole-heartily for the great effort and attention to detail that goes into these projects.  Also it’s worth mentioning that my own research focuses on many of these exact issues in mental training research, and hence i’m probably a bit biased in what I view as important issues.

New Meditation Study in Neuroimage: “Meditation training increases brain efficiency in an attention task”

Just a quick post to give my review of the latest addition to imaging and mindfulness research. A new article by Kozasa et al, slated to appear in Neuroimage, investigates the neural correlates of attention processing in a standard color-word stroop task. A quick overview of the article reveals it is all quite standard; two groups matched for age, gender, and years of education are administered a standard RT-based (i.e. speeded) fMRI paradigm. One group has an average of 9 years “meditation experience” which is described as “a variety of OM (open monitoring) or FA (focused attention) practices such as “zazen”, mantra meditation, mindfulness of breathing, among others”. We’ll delve into why this description should give us pause for thought in a moment, for now let’s look at the results.

Amplitude of bold responses in the lentiform nucleus, medial frontal gyrus, middle temporal gyrus and precentral gyrus during the incongruent and congruent conditions in meditators and non-meditators.

Results from incon > con, non-meditators vs meditators

In a nutshell, the authors find that meditation-practitioners show faster reaction times with reduced BOLD-signal for the incongruent (compared to congruent and neutral) condition only. The regions found to be more active for non-meditators compared to meditators are the (right) “lentiform nucleus, medial frontal gyrus, and pre-central gyrus” . As this is not accompanied by any difference in accuracy, the authors interpret the finding as demonstrating  that “meditators may have maintained the focus in naming the colour with less interference of reading the word and consequently have to exert less effort to monitor the conflict and less adjustment in the motor control of the impulses to choose the correct colour button.” The authors in the conclusion review related findings and mention that differences in age could have contributed to the effect.

So, what are we to make of these findings? As is my usual style, I’ll give a bulleted review of the problems that immediately stand out, and then some explanation afterwards. I’ll preface my critique by thanking the authors for their hard work; my comments are intended only for the good of our research community.

The good:

  • Sensible findings; increases in reaction time and decreases in bold are demonstrated in areas previously implicated in meditation research
  • Solid, easy to understand behavioral paradigm
  • Relatively strong main findings ( P< .0001)
  • A simple replication. We like replications!
The bad:
  • Appears to report uncorrected p-values
  • Study claims to “match samples for age” yet no statistical test demonstrating no difference is shown. Qualitatively, the ages seem different enough to be cause for worry (77.8% vs 65% college graduates). Always be suspicious when a test is not given!
  • Extremely sparse description of style of practice, no estimate of daily practice hours given.
  • Reaction-time based task with no active control

I’ll preface my conclusion with something Sara Lazar, a meditation researcher and neuroimaging expert at the Harvard MGH told me last summer; we need to stop going for the “low hanging fruit of meditation research”. There are now over 20 published cross-sectional reaction-time based fMRI studies of “meditators” and “non-meditators”. Compare that to the incredibly sparse number of longitudinal, active controlled studies, and it is clear that we need to stop replicating these findings and start determining what they actually tell us. Why do we need to active control our meditation studies? For one thing, we know that reaction-time based tests are heavily based by the amount of effort one expends on the task. Effort is in turn influenced by task-demands (e.g. how you treat your participants, expectations surrounding the experiment). To give one in-press example, my colleagues Christian Gaden Jensen at the Copenhagen Neurobiology Research recently conducted a study demonstrating just how strong this confounding effect can be.

To briefly summarize, Christian recruited over 150 people for randomization to four experimental groups: mindfulness-based stress reduction (MBSR), non-mindfulness stress reduction (NMSR), wait-listed controls, and financially-motivated wait-listed controls. This last group is the truly interesting one; they were told that if they had top performance on the experimental tasks (a battery of classical reaction-time based and unspeeded perceptual threshold tasks) they’d receive a reward of approximately 100$. When Christian analyzed the data, he found that the financial incentive eliminated all reaction-time based differences between the MBSR, NMSR, and financially motivated groups! It’s important to note that this study, fully randomized and longitudinal, showed something not reflected in the bulk of published studies: that meditation may actually train more basic perceptual sensitivities rather than top-down control. This is exactly why we need to stop pursuing the low-hanging fruit of uncontrolled experimental design; it’s not telling us anything new! Meditation research is no longer exploratory.

In addition to these issues, there is another issue a bit more specific to meditation research. That is the totally sparse description of the practice- less than one sentence total, with no quantitative data! In this study we are not even told what the daily practice actually consists of, or its quality or length. These practitioners report an average of 8 years practice, yet that could be 1 hour per week of mantra meditation or 12 hours a week of non-dual zazen! These are not identical processes and our lack of knowledge for this sample severely limits our ability to assess the meaning of  these findings. For the past two years (and probably longer) of the Mind & Life Summer Research Institute, Richard Davidson and others have repeatedly stated that we must move beyond studying meditation as “a loose practice of FA and OM practices including x, y, z, & and other things”. Willoughby Britton suggested at a panel discussion that all meditation papers need to have at least one contemplative scholar on them or risk rejection. It’s clear that this study was most likely not reviewed by anyone with any serious academic background in meditation research.

My supervisor Antoine Lutz and his colleague John Dunne, authors of the paper that launched the “FA/OM” distinction, have since stated emphatically that we must go beyond these general labels and start investigating effects of specific meditation practices. To quote John, we need to stop treating meditation like a “black box” if we ever want to understand the actual mechanisms behind it. While I thank the authors of this paper for their earnest contribution, we need to take this moment to be seriously skeptical. We can only start to understand processes like meditation from a scientific point of view if we are willing to hold them to the highest of scientific standards. It’s time for us to start opening the black box and looking inside.

Intrinsic correlations between Salience, Primary Sensory, and Default Mode Networks following MBSR

Going through my RSS backlog today, I was excited to see Kilpatrick et al.’s “Impact of Mindfulness-Based Stress Reduction Training on Intrinsic Brain Connectivity” appear in this week’s early view Neuroimage. Although I try to keep my own work focused on primary research in cognition and connectivity, mindfulness-training (MT) is a central part of my research. Additionally, there are few published findings on intrinsic connectivity in this area. Previous research has mainly focused on between-group differences in anatomical structure (gray and white matter for example) and task-related activity. A few more recent studies have gone as far as to randomize participants into wait-listed control and MT groups.

While these studies are interesting, they are of course limited in their scope by several factors. My supervisor Antoine Lutz emphasizes that in addition to our active-controlled research here in Århus, his group at Wisconsin-Madison and others are actively preparing such datasets. Active controls are simply ‘mock’ interventions (or real ones) designed to control for every possible aspect of being involved in an intervention (placebo, community, motivation) in order to isolate the variables specific to that treatment (in this case, meditation, but not sitting, breathing, or feeling special).  Active controls are important as there is a great deal of research demonstrating that cognition itself is susceptible to placebo-like motivational effects. All and all, I’ve seen several active-controlled, cognitive-behavioral studies in review that suggest we should be strongly skeptical of any non-active controlled findings. While I can’t discuss these in detail, I will mention some of these issues in my review of the neuroimage manuscript. It suffices to say however, that if you are working on a passive-controlled study in this area, you had better get it out fast as you can expect reviewers to be greatly tightening their expectations in the coming months, as more and more rigorous papers appear. As Sara Lazar put it during my visit to her lab last summer “the low-hanging fruit of MBSR brain research are rapidly vanishing”. Overall this is a good thing for the community and we’ll see why in a moment.

Now let us turn to the paper at hand. Kilpatrick et al start with a standard summary of MBSR and rsfMRI research, focusing on findings indicating MBSR trains focused attention, sensory introspection/interception and perception. They briefly review now well-established findings indicating that rsfMRI is sensitive to training related changes, including studies that demonstrate the sensitivity of the resting state to conditions such as fatigue, eyes-open vs eyes-closed, and recent sleep. This is all pretty well and good, but I think it’s a bit odd when we see just how they collect their data.

Briefly, they recruited 32 healthy adults for randomization to MBSR and waitlist controls. Controls then complete the Mindfulness Attention Awareness Scale (MAAS) and receive 8 weeks of diary-logged standard MBSR training. After training, participants are recalled for the rsfMRI scan. An important detail here is that participants are not scanned before and after training, rendering the fMRI portion of the experiment closer to a cross-section than true longitudinal design. At the time of scan, the researchers then give two ‘task-free states’, with and without auditory white noise. The authors indicate that the noise condition is included “to enable new analysis methods not conducted here”, presumably to average out scanner-noise related affects. They later indicate no differences between the two conditions, which causes me to ask how much here is meditation vs focusing-on-scanner-noise specific. Finally, they administer the ‘task free’ states with a slight twist:

“”During this baseline scan of about 5 min, we would like you to again stay as still as possible and be mindfully aware of your surroundings. Please keep your eyes closed during this procedure. Continue to be mindfully aware of whatever you notice in your surroundings and your own sensations. Mindful awareness means that you pay attention to your present moment experience, in this case the changing sounds of the scanner/changing background sounds played through the headphones, and to bring interest and curiosity to how you are responding to them.”

While the manipulation makes sense given the experimenter’s hypothesis concerning sensory processing, an ongoing controversy in resting-state research is just what it is that constitutes ‘rest’. Research here suggests that functional connectivity is sensitive to task-instructions and variations in visual stimulation, and many complain about the lack of specificity within different rest conditions. Kilpatrick et al’s manipulation makes sense given that what they really want to see is meditation-related alterations, but it’s a dangerous leap without first establishing the relationship between ‘true rest’ and their ‘auditory meditation’ condition. Research on the impact of scanner-noise indicates some degree of noise-related nuisance effects, and also some functionally significant effects. If you’ve never been in an MR experiment, the scanner is LOUD. During my first scan I actually started feeling claustrophobic due to the oppressive machine-gun like noise of the gradient coil. Anyway, it’s really troubling that Kilpatrick et al don’t include a totally task-free set for comparison, and I’m hesitant to call this a resting-state finding without further clarification.

The study is extremely interesting, but it’s important to note it’s limitations:

  1. Lack of active control- groups are not controlled for motivation.
  2. No pre/post scan.
  3. Novel resting state without comparison condition.
  4. Findings are discussed as ‘training related’ without report of correlation with reported practice hours.
  5. Anti-correlations reported with global-signal nuisance regression. No discussion of possible regression related inducement (see edit).
  6. Discussion of findings is unclear; reported as greater DMN x Auditory correlation, but the independent component includes large portions of the salience network.

Ultimately they identify a “auditory/salience” independent component network (ICN) (primary auditory, STG, posterior Insula, ACC, and lateral frontal cortex) and then conduct seed-regression analyses of the network with areas of the DMN and Dorsal Attention Network (DAN). I find it highly strange that they pick up a network that seems to conflate primary sensory and salience regions, as do the researchers who state “Therefore, the ICN was labeled as “auditory/salience”. It is unclear why the components split differently in our sample, perhaps the instructions that brought attention to auditory input altered the covariance structure somewhat.” Given the lack of motivational control in the study, the issues in this study begin to pile onto one another and I am not sure what we can really conclude. They further find that the MBSR group demonstrates greater “auditory/salience x DMN connectivity”, “greater visual and auditory functional connectivity” (see image below). They also report several increased anti-correlations, between the aud/sal network, dMPFC and visual regions. I find this to be an extremely tantalizing finding as it would reflect a decrease in processing automaticity amongst the SAL, CEN, and DMN networks. There are some serious problems with these kinds of analysis that the authors don’t address, and so we again must reserve any strong conclusions. Here is what Kilpatrick et al conclude:

“The current findings extend the results of prior studies that showed meditation-related changes in specific brain regions active during attention and sensory processing by providing evidence that MBSR trained compared to untrained subjects, during a focused attention instruction, have increased connectivity within sensory networks and between regions associated with attentional processes and those in the attended sensory cortex. In addition they show greater differentiation between regions associated with attentional processes and the unattended sensory cortex as well as greater differentiation between attended and unattended sensory networks”

As is typical, the list of findings is quite long and I won’t bother re-stating it all here. Given the resting instructions it seems clear that the freshly post-MBSR participants are likely to have engaged a pretty dedicated set of cognitive operations during the scan. Yet it’s totally unclear what the control group would do given these contemplative instructions. Presumably they’d just lie in the scanner and try not to tune out the noise- but you can see here how it’s not clear that these conditions are really that comparable without having some idea of what’s going on. In essence what you (might) have here is one group actually doing something (meditation) and the other group not doing much at all. Ideally you want to see how training impacts the underlying process in a comparable way. Motivation has been repeatedly linked to BOLD signal intensity and in this case, it could very well be that these findings are simple artifacts of motivation to perform. If one group is actually practicing mindfulness and the other isn’t, you have not isolated the variable of interest. The authors could have somewhat alleviated this by including data from the additional pain task (“not reported here”) and/or at least giving us a correlation of the findings with the MAAS scale. I emphasize that I do find the findings of this paper interesting- they map extremely well onto my own hypotheses about how RSNs interact with mindfulness training, but that we must interpret them with caution.

Overall I think this was a project with a strong theoretical motivation and some very interesting ideas. One problem with looking at state-mindfulness in the scanner is the cramped, noisy environment. I think Kilpatrick et al had a great idea in their attempt to use the noise itself as a manipulation. Further, the findings make a good deal of sense. Still, given the above limitation, it’s important to be really careful with our conclusions. At best, this study warrants an extremely rigorous follow-up, and I wish neuroimage had published it with a bit more information, such as the status of any rest-MAAS correlations. Anyway, this post has gotten quite long and I think I’d best get back to work- for my next post I think I’ll go into more detail about some of the issues confront resting state (what is “rest”?) and mindfulness (role of active controls for community, motivation, and placebo effects) and what they mean for resting-state research.

edit: just realized I never explained limitation #5. See my “beautiful noise” slides (previous post) regarding the controversy of global signal regression and anti-correlation. Simply put, there is somewhat convincing evidence that this procedure (designed to eliminate low-frequency nuisance co-variates) may actually mathematically induce anti-correlations where none exist, probably due to regression to the mean. While it’s not a slam-dunk (see response by Fox et al), it’s an extremely controversial area and all anti-correlative findings should be interpreted in light of this possibility.

If you like this post please let me know in the comments! If I can get away with rambling about this kind of stuff, I’ll do so more frequently.

Follow

Get every new post delivered to your Inbox.

Join 11,799 other followers

%d bloggers like this: