Mental Training and Neuroplasticity – PhD Complete!

I was asked to write a brief summary of my PhD research for our annual CFIN report. I haven’t blogged in a while and it turned out to be a decent little blurb, so I figured I might as well share it here. Enjoy!

In the past decade, reports concerning the natural plasticity of the human brain have taken a spotlight in the media and popular imagination. In the pursuit of neural plasticity nearly every imaginable specialization, from taxi drivers to Buddhist monks, has had their day in the scanner. These studies reveal marked functional and structural neural differences between various populations of interest, and in doing so drive a wave of interest in harnessing the brain’s plasticity for rehabilitation, education, and even increasing intelligence (Green and Bavelier, 2008). Under this new “mental training” research paradigm investigators are now examining what happens to brain and behavior when novices are randomized to a training condition, using longitudinal brain imaging.


These studies highlight a few promising domains for harnessing neural plasticity, particularly in the realm of visual attention, cognitive control, and emotional training. By randomizing novices to a brief ‘dose’ of action video game or meditation training, researchers can go beyond mere cross-section and make inferences regarding the causality of training on observed neural outcomes. Initial results are promising, suggesting that domains of great clinical relevance such as emotional and attentional processing are amenable to training (Lutz et al., 2008a; Lutz et al., 2008b; Bavelier et al., 2010). However, these findings are currently obscured by a host of methodological limitations.

These span from behavioral confounds (e.g. motivation and demand characteristic) to inadequate longitudinal processing of brain images, which present particular challenges not found in within-subject or cross-sectional design (Davidson, 2010; Jensen et al., 2011). The former can be addressed directly by careful construction of “active control” groups. Here both comparison and control groups receive putatively effective treatments, carefully designed to isolate the hypothesized “active-ingredients” involved in behavioral and neuroplasticity outcomes. In this way researchers can simultaneously make inferences in terms of mechanistic specificity while excluding non-specific confounds such as social support, demand, and participant motivation.

image2_meditationbrainWe set out to investigate one particularly popular intervention, mindfulness meditation, while controlling for these factors. Mindfulness meditation has enjoyed a great deal of research interest in recent years. This popularity is largely due to promising findings indicating good efficacy of meditation training (MT) for emotion processing and cognitive control (Sedlmeier et al., 2012). Clinical studies indicate that MT may be particularly effective for disorders that are typically non-responsive to cognitive-behavioral therapy, such as severe depression and anxiety (Grossman et al., 2004; Hofmann et al., 2010). Understanding the neural mechanism underlying such benefits remains difficult however, as most existing investigations are cross-sectional in nature or depend upon inadequate “wait-list” passive control groups.

We addressed these difficulties in an investigation of functional and structural neural plasticity before and after a 6-week active-controlled mindfulness intervention. To control demand, social support, teacher enthusiasm, and participant motivation we constructed a “shared reading and listening” active control group for comparison to MT. By eliciting daily “experience samples” regarding participants’ motivation to practice and minutes practiced, we ensured that groups did not differ on common motivational confounds.

We found that while both groups showed equivalent improvement on behavioral response-inhibition and meta-cognitive measures, only the MT group significantly reduced affective-Stroop conflict reaction times (Allen et al., 2012). Further we found that MT participants show significantly greater increases in recruitment of dorsolateral prefrontal cortex than did controls, a region implicated in cognitive control and working memory. Interestingly we did not find group differences in emotion-related reaction times or BOLD activity; instead we found that fronto-insula and medial-prefrontal BOLD responses in the MT group were significantly more correlated with practice than in controls. These results indicate that while brief MT is effective for training attention-related neural mechanisms, only participants with the greatest amount of practice showed altered neural responses to negative affective stimuli. This result is important because it underlines the differential response of various target skills to training and suggests specific applications of MT depending on time and motivation constraints.

MT related increase in DLPFC activity during affective stroop task.
MT related increase in DLPFC activity during affective stroop task.

In a second study, we utilized a longitudinally optimized pipeline to assess structural neuroplasticity in the same cohort as described above (Ashburner and Ridgway, 2012). A crucial issue in longitudinal voxel-based morphometry and similar methods is the prevalence of “asymmetrical preprocessing”, for example where normalization parameters are calculated from baseline images and applied to follow-up images, resulting in inflated risk of false-positive results. We thus applied a totally symmetrical deformation-based morphometric pipeline to assess training related expansions and contractions of gray matter volume. While we found significant increases within the MT group, these differences did not survive group-by-time comparison and thus may represent false positives; it is likely that such differences would not be ruled out by an asymmetric pipeline or non-active controlled designed. These results suggest that brief MT may act only on functional neuroplasticity and that greater training is required for more lasting anatomical alterations.

These projects are a promising advance in our understanding of neural plasticity and mental training, and highlight the need for careful methodology and control when investigating such phenomena. The investigation of neuroplasticity mechanisms may one day revolutionize our understanding of human learning and neurodevelopment, and we look forward to seeing a new wave of carefully controlled investigations in this area.

You can read more about the study in this blog post, where I explain it in detail. 

A happy day, my PhD defense!
A happy day, my PhD defense!


Allen M, Dietz M, Blair KS, van Beek M, Rees G, Vestergaard-Poulsen P, Lutz A, Roepstorff A (2012) Cognitive-Affective Neural Plasticity following Active-Controlled Mindfulness Intervention. The Journal of Neuroscience 32:15601-15610.

Ashburner J, Ridgway GR (2012) Symmetric diffeomorphic modeling of longitudinal structural MRI. Frontiers in neuroscience 6.

Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK (2010) Removing brakes on adult brain plasticity: from molecular to behavioral interventions. The Journal of Neuroscience 30:14964-14971.

Davidson RJ (2010) Empirical explorations of mindfulness: conceptual and methodological conundrums. Emotion 10:8-11.

Green C, Bavelier D (2008) Exercising your brain: a review of human brain plasticity and training-induced learning. Psychology and Aging; Psychology and Aging 23:692.

Grossman P, Niemann L, Schmidt S, Walach H (2004) Mindfulness-based stress reduction and health benefits: A meta-analysis. Journal of Psychosomatic Research 57:35-43.

Hofmann SG, Sawyer AT, Witt AA, Oh D (2010) The effect of mindfulness-based therapy on anxiety and depression: A meta-analytic review. Journal of consulting and clinical psychology 78:169.

Jensen CG, Vangkilde S, Frokjaer V, Hasselbalch SG (2011) Mindfulness training affects attention—or is it attentional effort?

Lutz A, Brefczynski-Lewis J, Johnstone T, Davidson RJ (2008a) Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS One 3:e1897.

Lutz A, Slagter HA, Dunne JD, Davidson RJ (2008b) Attention regulation and monitoring in meditation. Trends Cogn Sci 12:163-169.

Sedlmeier P, Eberth J, Schwarz M, Zimmermann D, Haarig F, Jaeger S, Kunze S (2012) The psychological effects of meditation: A meta-analysis.

4 thoughts on “Mental Training and Neuroplasticity – PhD Complete!

    • Thanks Matt! It was a crazy amount of work. I think i’m done with longitudinal and group studies for a good long while. Feels great to be taking on new projects.🙂

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s